Who we are

solutions that transform

GTI ENERGY SUSTAIN H2

We develop, scale, and deploy energy transition solutions

With a trusted team of scientists, engineers, and partners

Leveraging our deep expertise in gases, liquids, infrastructure and efficiency

Embracing systems thinking, innovation, and collaboration

Delivering impactful innovations from concept to market

needed for

SUSTAIN H2

<u>SU</u>bsurface <u>S</u>torage <u>T</u>echnological <u>A</u>dvancements & <u>IN</u>novation for Hydrogen

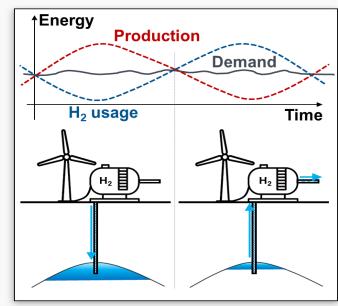
Accelerating the Deployment of Underground Hydrogen Storage

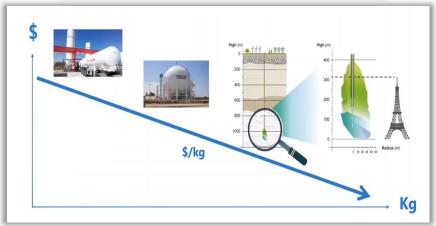
The need for expanded hydrogen storage

Large-scale low-cost storage solutions will be critical to implementing a hydrogen economy

Long-duration Energy Storage

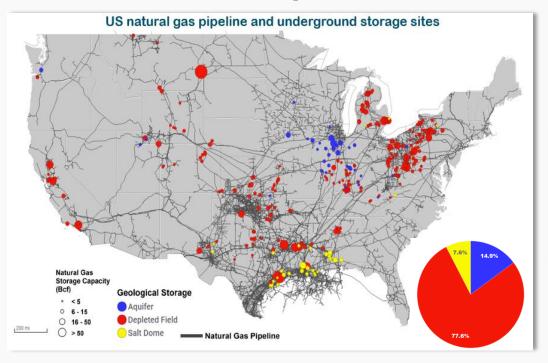
 Comparable to developing storage opportunities for natural gas storage, thus expediting the potential for hydrogen's widespread adoption


Renewable Energy Integration

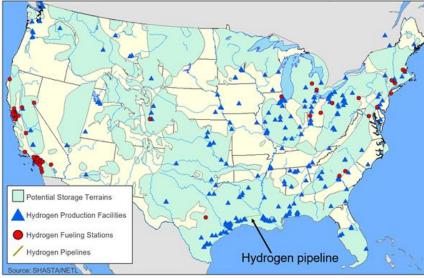

 Opportunity to store surplus energy during periods of excess generation.

Resource Optimization

 Minimizing infrastructure development costs and environmental impact.



Natural Gas Experience



Today: 4.8 Tcf of underground storage capacity across 412 active facilities

- 20% of winter consumption
- Provides economic and price flexibility

Locations of potential hydrogen storage systems in the United States and distance to existing hydrogen production and distribution infrastructure. Source: https://edx.netl.doe.gov/shasta/

Timeline to Actions

U.S. National Clean Hydrogen Strategy and Roadmap (2023)

Actions to support safe, efficient, and reliable clean hydrogen delivery and storage infrastructure

2022-2025

- Develop and update rigorous analytical models and tools to assess delivery and storage pathways, determine gaps, and prioritize strategies.
- Develop technologies to tightly monitor and mitigate hydrogen leaks and boil-off.
- Assess compatibility of pipeline and component materials with hydrogen and hydrogen blends with natural gas.
- Advance novel approaches for low cost, high efficiency hydrogen liquefaction and boil-off mitigation.
- Conduct discovery and development of hydrogen carrier materials for use in bulk storage and distribution.
- Identify geologic formations that can be used for bulk hydrogen storage, and associated
- Develop and optimize designs for hydrogen infrastructure in key applications, such as industry and energy storage.
- Develop technologies for high throughput dispensing of hydrogen for heavy-duty vehicles.
- Develop and harmonize fueling protocols for heavy-duty and offroad vehicles for which hydrogen is the optimal solution.
- Accelerate RDD&D to reduce the cost of high pressure and liquid hydrogen storage tanks, including carbon fiber composite vessels.
- Establish data monitoring and collection framework to assess upstream and on-site emissions.

2026-2029

- Validate and refine analyses. models, and tools to prioritize delivery and storage pathways for various applications.
- Demonstrate efficient and reliable hydrogen pipeline compressor
- Quantify loss rates from gaseous and liquid hydrogen infrastructure to inform mitigation requirements in large-scale deployments.
- Develop designs for commercialscale novel, high efficiency systems for hydrogen liquefaction.
- Advance promising concepts for hydrogen carriers and design reliable, low-cost regenerator
- Initiate regional bulk hydrogen storage demonstrations, including ensure local and regional benefits. Demonstrate novel, efficient, and
- low-cost approaches to bulk hydrogen delivery.
- Deploy scalable hydrogen fueling stations to support early fleet markets, such as heavy-duty trucks
- Ensure monitoring systems and data collection are in place for potential hydrogen and other emissions/releases.
- Design sustainable and equitable regional clean hydrogen networks in key locations to maximize benefits, ensuring energy and environmental justice and equity.

2030-2035

- Design networks of hydrogen infrastructure optimized for regional supply and demand, in collaboration with local communities and stakeholders to maximize benefits and ensure energy, environmental, and equity goals are addressed.
- Demonstrate advanced liquefaction with double the efficiency of current concepts.
- Develop long term storage plan/strategic hydrogen reserve to ensure resilience of supply.
- Deploy Regional Clean Hydrogen Hubs with advanced low-cost clean hydrogen storage and infrastructure.
- Collect data, including emissions data, from demonstrations of bulk hydrogen distribution (e.g., through pipelines or carriers) in real-world environments to inform RDD&D that reduces cost and improves reliability.
- Continue collecting data to inform scale up of optimal delivery and storage pathways and RDE
- Ensure any safety or other practices related to hydrog infrastructure are shared a diverse stakeholders to encontinuous improvement.
- Leverage global collaborat hydrogen infrastructure to long term investment plan hydrogen exports opportu

2022

2025

2029

materials for use in bulk storage and distribution.

- Identify geologic formations that can be used for bulk hydrogen storage, and associated development and operating requirements.
- Develop and optimize designs for budua a la infuacioni de la legu

ayatema.

- Initiate regional bulk hydrogen storage demonstrations, including underground approaches, and ensure local and regional benefits.
- Demonstrate novel, efficient, and low-cost approaches to bulk hydrogen delivery.

Danlar, acalabla bridge aca frialing

https://www.hydrogen.energy.gov/clean-hydrogen-strategy-roadmap.html

Addressing the Challenge

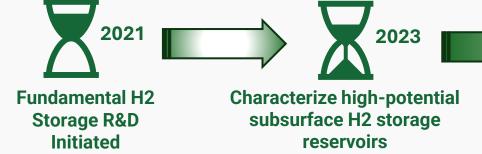
- > Fundamental R&D
- Data and Studies

Market Assessment &

Economics

- > Recommended practices
- Capabilities establishment
- > Field demonstrations

Accelerate the deployment of safe & cost-effective long-term underground hydrogen storage beyond salt caverns through a combination of scientific expertise, market insights, field experience, & industry collaboration.


Vision

- Engage diverse stakeholders to coordinate cross-collaborative R&D
- Address key technical challenges to resolve critical uncertainties
- Facilitate data collection, sharing, and analysis to guide site selection
- Complete national and regional techno-economic assessments
- Accelerate field deployment by engaging all stakeholders and reducing remaining uncertainties

Scaling Up Underground Hydrogen Storage

Scale up of Fundamental Technologies for Prototype Demonstration

Program Inception

Q1 2024

Stakeholder Engagement

2024-2025

- Geo-Engineering
- Technology & Operation
- Market & Economics

- System Integration
- Policy & Social Impacts
- Community Engagement

Field Development Planning

Technical Scope

SUSTAIN H₂

Coordinating, De-risking, Accelerating

Geo-Engineering

Technical De-risking

Technology & Operations

Operational De-risking

Market
Assessment &
Economics

Economic De-risking Business Concept

System Integration

Infrastructure De-risking Hydrogen Value Chain Policy & Social Impacts

Legal and Regulatory Frameworks

- ✓ Conduct coordinated R&D to tackle key questions, narrowing the existing knowledge gap.
- ✓ Technologies needed and operational information for implementation of a field pilot
- ✓ Pathways for retrofitting underground natural gas storage facilities
- ✓ Site screening workflow/guideline by structuring collected data and information

Current Partners and Supporters

Illinois State Geological Survey

PRAIRIE RESEARCH INSTITUTE

SUSTAIN H2 Value Proposition

De-risking research

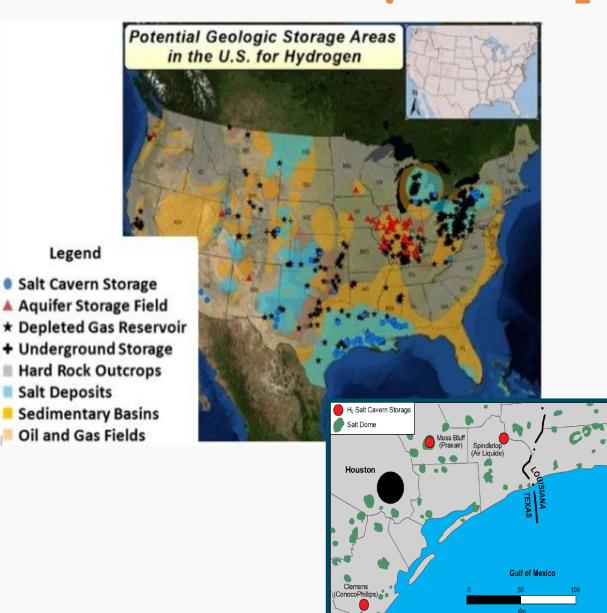
Reducing cost

Identifying opportunities

Developing partnerships

SUSTAIN H2

SUbsurface Storage Technological Advancements & INnovation for Hydrogen


Contact:

ssalahshoor@gti.energy
+1 847-768-0979

Supplementary Information

- Storage in salt caverns is restricted to the Gulf Coast and with potential thinner salt deposits in the westcentral plains.
- Storage in aquifers, depleted reservoirs, and repurposed natural gas storage fields significantly increase the available volumes.
- Experience in underground storage of hydrogen is limited to salt caverns as of now. Storage of hydrogen in depleted fields and aquifer had not been demonstrated.

